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Mild heating of the ring-expanded N-heterocyclic carbenes 7-Mes and 6-Mes results in intramolecular
insertion of the carbene into an ortho-methyl C–H bond. In the presence of traces of acid, the resulting
products ring-open to afford N-alkyl indoles.

� 2009 Elsevier Ltd. All rights reserved.
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N-Heterocyclic carbenes (NHCs) are a well-established class of
compounds of considerable importance due to their roles as li-
gands in metal-mediated catalysis and as organocatalysts in their
own right.1 While the majority of studies have focused on the
unsaturated and saturated five-membered ring species A and B
(Scheme 1), the so-called ring-expanded carbenes that is, those
containing seven- and six-membered rings, such as C and D have
recently started to receive some attention.2 These species display
a significantly wider N–C–N angle than their five-membered coun-
terparts, which in turn considerably increases their basicity.3 We
now report another remarkable difference with the observation
that mild heating of the seven- and six-membered carbenes with
N-mesityl substituents (7-Mes, 1; 6-Mes, 2: Scheme 2) leads to
insertion of the carbene into one of its own ortho-methyl C–H
bonds. Although such intramolecular C–H activation has been ob-
served with unstable acyclic monoaminocarbenes, we believe it
to be unknown for diaminocarbenes.4 Indeed there is only one
example of this class of carbenes reacting with non-acidic C–H
bonds,5 that being the low yielding insertion of a mixed N-Et/
N-iPr six-membered carbene into a methyl C–H bond of toluene.6

Substitution of the five-membered carbenes IMes and SIMes
(Scheme 1: A and B, R = mesityl) into a range of ruthenium com-
plexes, including Ru(PPh3)3(CO)H2, Ru(PPh3)3(CO)HX (X = F, Cl)
and Ru(PPh3)3HCl has been previously described.7 Efforts to react
these same precursors with 7-Mes 1 at elevated temperatures
failed to generate any Ru–NHC containing products but instead,
in all cases, gave the C–H insertion product 3 (Scheme 2).8 Further
examination revealed that 3 could be formed by simply heating an
in situ-generated solution of 1 by itself in benzene at 70 �C for
24 h.9 Similarly, heating the six-membered ring carbene 2 at
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70 �C gave the insertion product 4, although the reaction pro-
ceeded a lot more slowly, requiring 72 h to go to completion.10

Proton NMR spectroscopy provided unequivocal evidence for
the structures of 3 and 4 with the appearance of a doublet of dou-
blets resonance for the unique aminal proton at the C2 position (3:
d 4.97; 4: d 4.87) and two doublets of doublets arising from the dia-
stereotopic protons of the activated arm (3: d 2.77, 2.62; 4: d 2.55,
2.46). In contrast to the 1H NMR spectra of 1 and 2, which display
only two methyl signals, four and five methyl resonances were
seen for 3 and 4, respectively, consistent with the activation of
one of the mesityl rings. The high frequency quaternary C2
resonances of 1 (d 257.3) and 2 (d 244.9) in the 13C{1H} PENDANT
Mes = 2,4,6-Me3C6H2

Scheme 2.
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Figure 1. ORTEP diagram of 6. Ellipsoids are shown at 50% probability while all
hydrogen atoms have been removed for clarity.
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spectra were replaced by signals at d 82.6 (3) and d 81.8 (4) for the
newly formed methine C2 carbon centres.11 Despite a number of
attempts, 3 and 4 could only be isolated as viscous oils, excluding
any possibility of crystallographic characterisation.

Dissolution of either 3 or 4 in CDCl3 resulted in opening of the
saturated seven- and six-membered rings to afford the N-alkyl in-
dole products 5 and 6.12 Proton NMR spectra revealed the presence
of two new high frequency doublets for both 5 (d 6.86, 6.26) and 6
(d 6.70, 6.51), characteristic of the indolyl protons. The structure of
6 was confirmed unequivocally by X-ray crystallography (Fig. 1)
following the successful crystallisation of the compound from a
concentrated MeOH solution at �78 �C.13 Exposure of 3 and 4 to
a silica gel column led to their conversion into 5 and 6, which along
with the chloroform result, suggests that traces of acid are likely to
be responsible for the ring-opening reaction.14

Further work is necessary to elucidate fully the factors that gov-
ern the insertion chemistry seen for 1 and 2. The order of basicity
(7-NHC > 6-NHC > 5-NHC)15 makes it very likely that this is an
important contributor. In line with this, thermolysis of SIMes
(Scheme 1: B, R = mesityl) at 70 �C for 72 h resulted in no insertion
chemistry. The proximity of the carbene lone pair of electrons to a
C–H bond does not appear to be paramount given that the distance
from the carbenic carbon to the nearest methyl substituent is in
fact longer in the more reactive species 1 (3.348 Å) than it is in 2
(3.281 Å).3 The same two structures show quite different CMes–
N–N–CMes torsion angles, and it may be that these are altered
upon generating the bicyclic ring systems present in 3 and 4. It is
also worth noting that upon changing the N-substituent on the se-
ven-membered carbene from mesityl to 2,6-diisopropylphenyl, no
activation of an isopropyl methyl C–H bond was observed even
after heating at 70 �C for 48 h, implying that it is unfavourable to
form a second six- rather than five-membered ring.

In conclusion, we have demonstrated that increasing the ring
size (5 ? 6 ? 7) in N-heterocyclic carbenes results in the unprece-
dented observation of intramolecular C–H insertion in a diamino-
carbene. We believe that these results have ramifications not
only in organocarbene chemistry, but also in the application of
these ligands in transition metal catalysis.
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